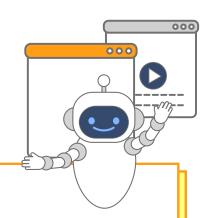
한국스포츠교육학회 제3차 교육세미나

미래 체육교육에서의 에듀테크 활용 및 적용방안


10. 22. — pm 4:00~

한국스포츠교육학회

© 02-820-6371 kasp14th@naver.com

발표자

기 참여방법

학회 Youtube 채널에서 시청(녹화영상 송출 예정)

(https://www.youtube.com/channel/UCMzkG1a3ahXTM0Hwjf2jKOQ)

세부일정

2 프로그램

시간

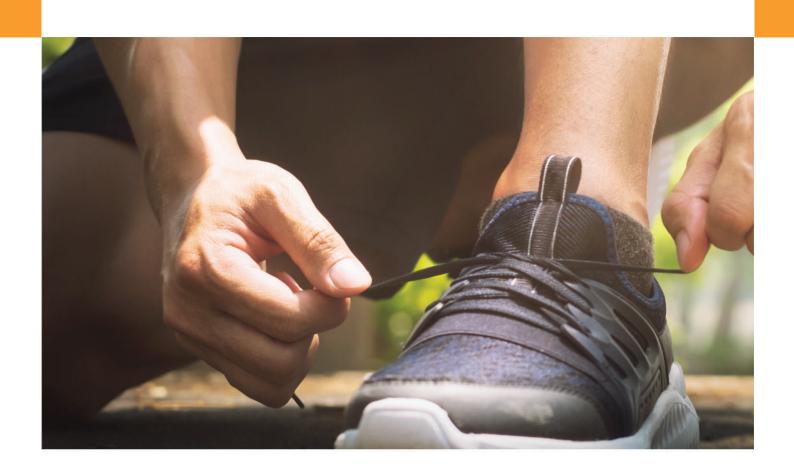
		사회 : 이:	의재 교사 (주엽고등학교)
16:00 ~ 16:10		개회사 유정애 회장 (한국스 <u>포츠교</u> 육학회)	
16:10 ~16:30	유초등교육분과	놀이가 배움이 되는 순간 : 에듀테크를 활용한 포트럭파티 신체활동프로그램	김석동 교사 (서울중마초등학교)
16:30 ~16:50	중등교육분과	드론을 활용한 에듀테크 체육수업 사례	임대환 교사 (한성과학고등학교)
16:50 ~17:10	고등교육분과	체육교과 메이커 교육 프로그램 개발 및 적용 -피지컬 컴퓨팅 적용 사례를 중심으로-	권용철 교사 (부산양덕여자중학교)

회원 여러분, 안녕하십니까?

청명한 가을에 한국스포츠교육학회 제3차 교육세미나를 개최하 게 되어 기쁘게 생각합니다. 우리의 희망과 달리 코로나19 상황이 아직도 지속되어 다시 온라인으로 교육세미나를 개최하게 되었습 니다. 이제는 위드 코로나(With Corona19) 시대를 우리 삶에 수 용해야 하고, 코로나19와 함께 우리의 미래를 준비해야 하는 상황 을 직면하고 있습니다.

제3차 교육세미나는 교육분과 중 3개 분과(유초등교육분과, 중등교육분과, 대학원분과)에서 공동 주관하는 세미나입니다. 이번 주제는 '미래 체육교육에서의 에듀테크 활용 및 적용방 안'로, 현 시점에 우리 모두에게 필요한 프로그램이 준비되어 있습니다. 이번 교육세미나 프로그램을 준비하고 운영해주신 3개 분과 임원 여러분께 깊은 감사의 말씀 드립니다. 또한 학기 중에 여러 가지로 바쁜 일정에도 불구하고 본 발표에 임해주신 3분의 발표자분들에게도 깊은 감사의 말씀 드립니다.

특히 오늘 개최되는 교육세미나는 제4차 산업혁명 시대와 코로나19시대를 직면하면서 스포 츠교육을 연구하고 공부하는 우리 학회에 꼭 필요한 내용이라고 생각합니다. 테크놀로지는 우리 삶뿐만 아니라 스포츠교육에 없어서는 안 될 핵심 요소라고 생각합니다. 오늘 발표 사례는 초등체육, 중등체육, 그리고 대학체육의 풍성한 교육콘텐츠와 창의적인 수업 방식을 공유하는 뜻 깊은 자리가 될 것으로 기대합니다.


끝으로, 회원 여러분들에게 온라인을 통해 인사드릴 수 있는 기회를 갖게 되어 매우 기쁘고, 다시한번 이번 교육세미나를 준비해주신 3개 교육분과 임원진들의 수고에 깊은 고마움을 전합니다. 감사합니다.

> 2021년 10월 22일 한국스포츠교육학회장 **유 정 애**

목 차

인사말

〈개회사〉한국스포츠교육학회 회장 유정애 ・・・・・・・・・・・・・・ /	1p
프로그램 및 발표자	
01. 예비놀이가 배움이 되는 순간 : 에듀테크를 활용한 포트럭파티 신체활동프로그램 · · · · · · · · · · · · · · · · · · ·	⁷ p
02. 드론을 활용한 에듀테크 체육수업 사례 · · · · · · · · · · · · · · · · · ·	lp
03. 체육교과 메이커 교육 프로그램 개발 및 적용 -피지컬 컴퓨팅 적용 사례를 중심으로- ····································	lр

김석동 (서울중마초등학교)

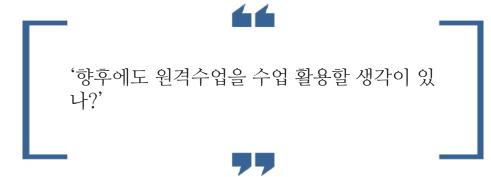
놀이가 배움이 되는 순간

-에듀테크를 활용한 포트럭파티신체활동 프로그램

서울중마초등학교 김석동

목차

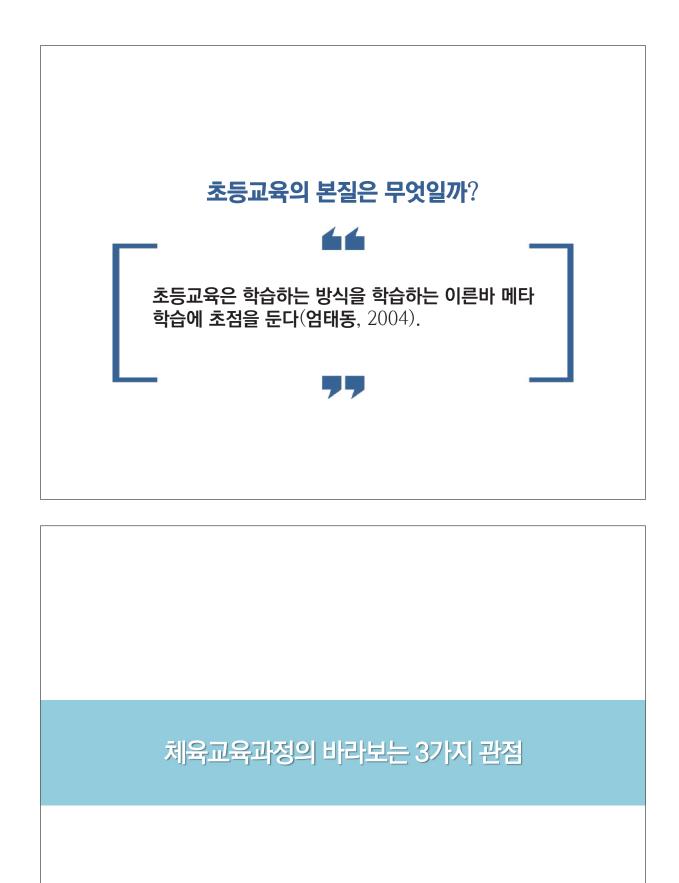
01 / 미지의 땅에 도착한 체육교육

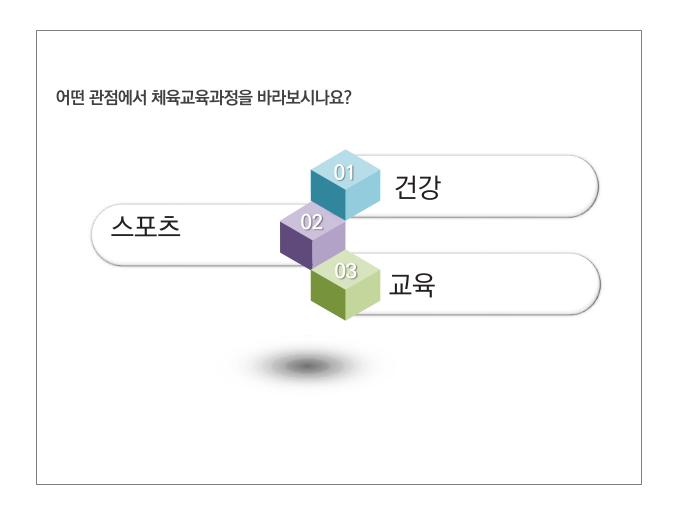

02 / 이론적 배경

03 / 포트럭파트신체활동프로그램

미래를 앞당긴 방아쇠

NEIS 시스템을 통한 22만여명의 선생님을 대상을 한 설문조사


팬데믹이 끝나도 계속 쌍방향 원격수업을 하실건가요?



원격수업 확산과 문제점(황승연, 1996) 44 네트워크 전송용량 부족 Software와 Software 작성도구 부족 Multmedia 교육자료 작성을 위한 기본 시설 미비 교육자료 수집·정리·DB화 인력부족

코로나 전에도 존재했던 어려움들

초등 체육수업의 어려움
초등학교 배움의 본질은 무엇일까?

에듀테크라는 그릇에 담긴 수 있는 형태의 체육은?

에듀테크란?

에듀테크는 <u>교육</u>과 <u>기술</u>의 합성어로써 교육 콘텐츠 에 ⁴차 산업혁명의 기술을 도입하여 더욱 재미있고, 효과적으로 습득할 수 있도록 하는 기술이다.

Yeongu Choi, "Prediction and Prospect of Future Education in the 4th Industrial Revolution Era", Future Horizon 33, 2017.

4차산업혁명 기술?

4차 산업혁명 기술에는 빅데이터(Bigdata), 인공지 능(AI), 사물인터넷(IoT), 로봇, 드론, 자율주행, 가 상현실(VR) 등이 있다.

박지수, 길주민, 2020

에듀테크의 유형

온라인 공개 수업

- 온라인 공개수업은 원격교육이 진화한 형태.
- 교수자와 학습자가 직접 대면하지 않고 매개 자료를 통해 수업을 하는 것
- 대표적으로 MOOK(Massove Open Online Course)로 K-MOOK, Udacity등이 있음.

유비쿼터스가 가 능한 교육

에듀테크의 유형

빅데이터, AI를 활용한 교육

- 인공지능 교육과정 도입
- 다양한 평가 자료로 사용 가능

개인 맞춤형 교 육 가능

에듀테크의 유형

마이크로 러닝

- 비정형화된 학습(informal learning)의 한 형태로, 짧은 단위의 콘텐츠를 활용하여 사람들이 언제, 어디서나 빈번하게 접속하여 학습하는 형태
- TED, 세상을 바꾸는 시간(세바시), 지식채널 e, 등

사용자 지향 교육

에듀테크와 관련된 논의?

결국 기술이 아닌 교육

첨단 기술의 활용 이전에 교육 이론적 토대를 갖춰 야 함

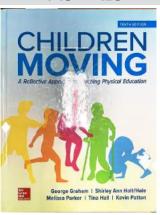
최성욱, 2018

가. 체육에는 문해력이 없을까?

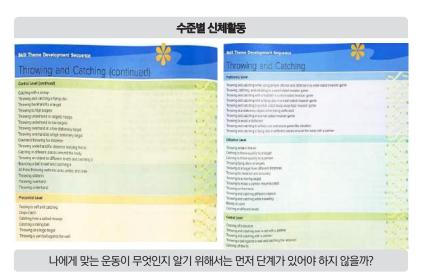
나. 놀이의 목적이 뭘까?

다. 교실은 없어져도 학교는 계속된다.

체육에도 문해력이 있을까?


문해력은 텍스트를 읽고 쓰는 능력 오늘날에는 지식과 정보에 접근하고 이를 평가, 분석, 소통하여 개인과 사회 문제를 해결하는 능력

위키백과, 2021. 10.17


전이 가능한 신체활동

전이 가능한 신체활동

한번도 던지기 배워보지 못한 친구들이 피구를 온전히 잘 할 수 있을까?

단계가 있는 신체활동

놀이의 목적은 무엇일까?▲ ▲ ▲ 놀이의 목적이 배움이라면…. 결국 운동장은 배움의 장이 되어야 한다.

교과별 차별화된 교수 전략 필요

타교과의 플립러닝 방식을 그대로 사용해서는 안 된다.

체육교육에 특화된 교수체체와 전략을 제공

어떤 향이 나나요?

다음 영상에서 무슨 향기가 나시나요?

추상적 개념을 다루는 훈련이 부족했기 때문에

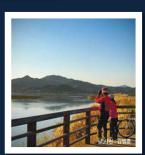
지금은 당연한 것을 과거에는 힘들어 했던 이유는 무엇일까?

베다 문명이 널리 빠르게 퍼지지 못한 이유

교실이 사라져도 교육은 계속된다.

신체활동을 통한 교육

땀 흘리는 것에만 만족하는 것이 아닌 그 안에서 배움이 존재해야 한다.



3 Potluck Party Program

가. Potluck Party는?

나. 놀이가 배움이 되는 순간

Potluck Party 신체활동Program

Potluck Party란?

여러 사람들이 각자 만든 음식을 가지고 와서 함께 나누어 먹는 파티의 이름

어떠한 형태로도 가능하며 참석자 수가 많을수록 음식의 종류도 다양해져 즐길 수 있는 요리가 많아집니다.

https://youngglovis.tistory.com/1036[영글로비스 (Young GLOVIS)]

Potluck Party 신체활동 Program

활동 방법

- 1. 파티 준비하기
- 2. 파티 하기
- 3. 파티 정리하기

놀이가 배움이 되는 순간

파티 준비하기

배울 내용에 대한 연습

자신이 할 수 있는 것과 하고 싶은 것을 생각한다.

파티 준비하기

구글 설문지를 활용한 준비

아는만큼 할 수 있다.

파티 준비하기

패들렛을 활용한 생각 나누기

다른 친구들과 함께 할 때 더 즐겁고 유익하다

파티하기

파티하기

파티하기

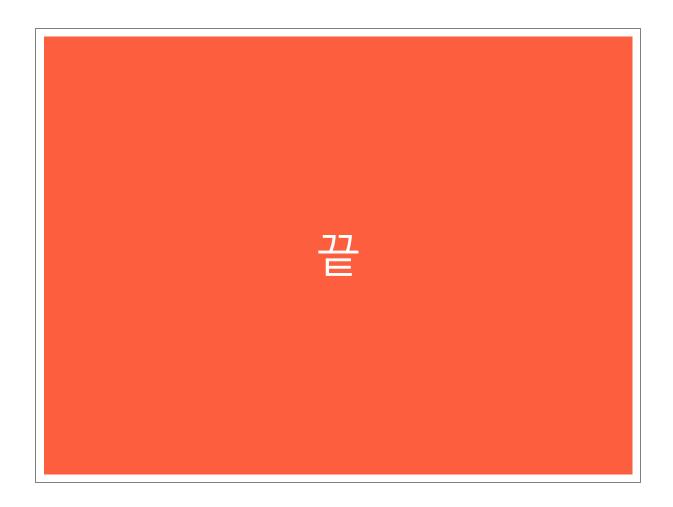
던지기를 활용하여 놀이한다.

규칙과 전략은 각자의 머릿속에서

파티 정리하기

파티 정리하기

배운 내용을 다시 생각하고 더 재밌는 파티를 만들어보자

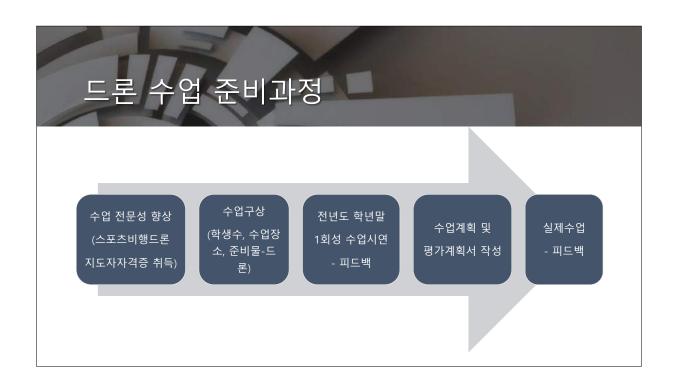


배운 후 성찰을 바로 다음 수업 시간에 적용될 수 있도록

다. 함께 고민해봅시다.

임대환 (한성과학고등학교)

드론을 활용한 에듀테크 체육수업 사례


한성과학교등학교 임대환

왜 체육시간에 드론을 가르쳐야 할까?

- 고등학교 체육수업 \Longrightarrow 평생체육
- 교육과정 신체활동 가치를 중심으로 한 수업
- 미래 역량을 기를 수 있는 수업
- •시대의 흐름을 반영한 교육과정(4차 산업 혁명시대의 필수)
- 드론을 가르칠 수 있는 교과?

드론! 무엇을 가르칠 것인가?

- e스포츠, 바둑과 같은 멘탈스포츠도 체육과 스포츠의 범주에 포 함되어야 할까?
- 드론 수업의 범주: 드론 만들기, 영상 만들기, 코딩, 날리기(조종)
- 체육에서의 드론 수업: 드론 조종법(미세 조종능력) 드론과 안전

1. 수업전문성 향상(자격증 취득)

2. 수업구상(수업환경 고려)

- 학급당 학생수: 1학급 20명 내외
- 장소: 야외는 비행금지구역(체육관 수업 가능)
- 예산: 예산확보를 위해 2018년말 수업용 드론 10개 구매,
 2019년 나머지 완구용 드론 10개, 배터리, 코딩 드론 구입
 - ※ 완구용드론 35,000~40,000, 배터리 약 300,000원(넉넉히) 수업에 필요한 최소비용 70만원~100만원

3. 학년말 1회성 수업시연

피드백

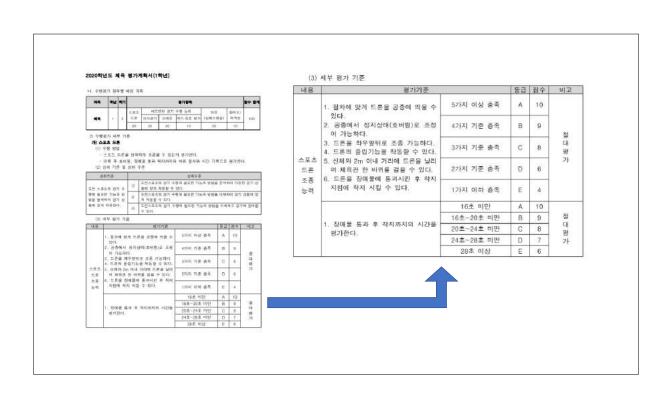
- 배터리 소모가 빠르고(약 3~5분), 배터리 충전이 오래 걸리므로 배터리가 많이 필요함.
- 완구용 드론일수록 전파간섭이 심해 연결 (바인딩)할 때 주의해야함.

4. 수업계획 및 평가계획서 작성

2019학년도 체육 평가계획서(1학년)

자목 학년 학기			6			기항목 원수				경수함계	
				47 87	48 84	권보이병 경	가 수현 등의	रोसंसभ	전점세미		
		1	71.6	2071	327	多度 資料	-PAPS	牙石器科女	unn		
	1.5		20	10	.20	.10	10.	20	1		
				기계체조	ANA CH	바투만한 경기 수명 등학			SISTEMAN	합약도/	1,000
		3 마루운 다시라기	946	289)		취약성	100				
	1		. 10	-00	- 20	10	10	10	10:		

사) 2학기 스포츠 드론


(1) 수용 방법 - 스포츠 드통용 정확하게 조작된 수 있는지 평가하다.

48	용기가전		83	전우	WII
	다른 2. 공항에서 정치상에도 최종이 가능히 다.(보여원) 4. 프용용 하무합니도 조종 가능하다. 5. 프론의 문립기능을 착용할 수 있다.	5가의 이상 축칙	A	20	
AUA		4기지 기준 음식	В:	18	- 10
58		3개의 기준 용목	E	16	10
(a) FEE		2가지 기운 중의	D	14	79
	6. 도본을 접확한 위치에 의원하게 작 지 시합 수 있다.	1214 011 65	£	12	

(3) 세부 평가 기준

내용	평가기준		등급	점수	비고
	1, 조종기와 드론을 안전하게 연결할 수 있다.(바인덤)	5가지 이상 총족	Α	20	
스포츠	2. 절차에 맞게 드론을 공중에 띄울 수 있다.	4가지 기준 충족	В	18	젘
드론 조종	3. 공중에서 정지상태로 조종이 가능하 다.(호버림)	3가지 기준 총족	С	16	절 대 평 가
능력	4. 드론을 좌우앞뒤로 조종 가능하다. 5. 드론의 플립기능을 작동할 수 있다.	2가지 기준 충족	D	14	가
	6. 드론을 정확한 위치에 만전하게 착 지 시킬 수 있다.	1가지 이하 춤족	E	12	

5. 실제수업(2019학년도)

온라인 수업 영상

2020학년도

학생 피드백(소감문-스포츠 드론 부분)

특히 마지막으로 진행하였던 드론에 대한 수업은 굉장히 인성길었는데, 드론의 경우 단 한번도 이를 스포츠라고 생 각한 적이 없었기 때문입니다. 그리고, 초등학생 때 드론 에 굉장히 관심이 많았던 저로서는 이번 수업은 대충 들 어도 되겠다는 생각이 있었는데, 오히려 제가 아직 모르는 내용이 있었고 프로펠러의 모양이 다르다는 내용에 대해 서도 알게 되면서, 수업에 더 집중할 수 있게 되었습니다. 직접, 날리는 과정에서 예전 감각이 사라져 있으면 어떻게 하지 걱정이 되기도 하였지만, 다행히 잘 날릴 수 있었고, 예전과 같은 즐거움을 느낄 수 있었습니다.

드론은 채육 수업을 하며 처음 접하게 됐는데 제가 생각 보다 호버링을 잘해서(맞겠죠..?ㅎㅎㅎㅎ) 드론 수업이 무척 재밌었습니다. 제가 조종하는 대로 이리저리 움직 이는 게 신기했고 원하는 위치에 착지시켰을 때는 짜릿 함도 컸습니다. 1년 동안 한 수업 내용을 돌아보니 정말 다양한 수업을 했다는 생각이 들었습니다. 새로운 스포 초도 접해보고 기존에 즐겼던 스포츠도 새로운 매력을 느낄 수 있는 시간이었습니다. 또, 나는 드론을 어릴 때부터 많이 접해왔지만, 한 번도 접해보지 못했던 친구들에게는 드론 수업 역 시 광장히 좋은 기회였다고 생각한다. 평소에 드론 을 쉽게 접하고, 또 전문적으로 기술을 배우는 기회 가 잘 없을텐데, 이번 기회를 통해 신세대 공학도라 는 본분에 맞게 스포츠 드론을 배울 수 있어 모두가 즐거워했다.

1년 동안 타바타, 달리기, 물구나무서기, 줄넘기, 드론, 배드민턴 등 참 많은 활동을 했던 것 같다. 그 중 단연 기억에 남는 것은 드론이었다. 학교에서 드론을 날리게 될 줄은 몰랐다. 드론을 날릴 때 드론을 제가 원하는 곳으로 보낼 수 있다는 것과 드론이 계속해서 떠있지 않고 제가 직접 호버링을 해야 한 다는 것이 재미있었다!!

가장 재미있었던 수업은 아무래도 드론 조종과 배 드민턴이었습니다. 배드민턴은 평소에 좋아하던 스 포츠였던지라 가장 재미있게 느껴졌고, 드론은 처 음 접했는데도 불구하고 내가 조종하는 대로 이 드 론 본체가 움직이는 것이 매우 신기하게 느껴져서 재미있었습니다. 드론은 평소에는 쉽게 접할 수 없는 것이기에 학교에서 드론 조종을 배우는 것이 흥미모였습니다. 배목 드론 조종을 연습할 시간이 때우 적었고 시험을 보기 직전까지도 내 마음대로 조종하기가 임들어 걱정했었지만 놀림개도 막 상 시험을 볼 때는 원하는 것으로 착지시키는 것에 성공을 하고 생각보다 잘 조종되어서 좋았던 기억이 있습니다. 이렇게 1년 동안 코로나19로 인해 학교 에 별로 오지 못했다는 현계가 있었음에도 온라만과 오프라인을 섞어하였다. 다양하게 체육 수업을 할 수 있어서 재미있었던 것 같습니다. 물론 학교에서 친구들과 직접 만나 같이 체육 수업을 하는 것이 더 좋긴 하지만 지금까지 했 던 것처럼 온라인을 통해 집에서 각자 체육 수업을 하는 것도 나용의 매력이 있다고 느껴습니다

미래 드론 체육수업의 방향

- 장애물을 통과하여 스피드를 평가하는 레이싱
- 정보와 융합 수업 코딩 드론을 이용한 군집비행
- 표현활동 드론으로 음악과 안무를 창작하여 표현하는 수업
- 미술과 물리 교과와 융합하여 나의 드론 만들기(꾸미기)
 - ※ 비행금지구역이더라도 초중고 학교운동장에서는 지도자의 감독아래 교육목적의 고도 20m 이내 드론 비행 가능 법안 통과 대기

한국스포츠교육학회 제 3차 교육세미나

체육교과 메이커 교육 프로그램 개발 및 적용 -피지컬 컴퓨팅 적용 사례를 중심으로-

권용철 (부산양덕여자중학교)

한국스포츠교육학회 세미나

체육교과 메이커 교육 프로그램의 개발 및 적용

- 피지컬 컴퓨팅 적용 사례를 중심으로 -

부산 양덕여자중학교

부산대학교 스포츠교육학 전공

박사과정 권용철

- l. 연구의 필요성
- Ⅱ. 개발과정
- Ⅲ. 활용사례
- IV. 활용효과

* 연구의 필요성

l. 연구의 필요성

I. 연구의 필요성

교육 패러다임의 변화

많은 정보보다 '생각 하는 힘'이 중요(Harari, 2018)

4차 산업혁명의 원동력은 기술이 아닌 교육(류태호, 2018)

I. 연구의 필요성

I. 연구의 필요성

- 2015 개정교육과정의 '창의융합적 인재 양성' 강조
- 기술의 발달, 급격한 사회 경제적 변화에 대한 대응을 위해 <u>미래 사회에 적합한 창의적 인재 양성이 필요</u> (국제미래학회, 한국교육학술정보원, 2017; 교육부, 2016; 미래창조과학부, 2016; 한국고용정보원, 2016).
- 학습자의 <u>다양한 경험</u>과 <u>능동적 배움의 필요성</u>이 강조

-) '창의융합적 인재 양성 교육'에 대한 관심 증가

미래를 위한 핵심 역량을 키우는 창의 · 융합 교육의 방법으로

·<mark>메이커 교육</mark>'에 대한 관심이 증가(서희정, 이종연, 임철일, 2019)

자신감 향상 **교육**

> 력 습 결과물 공유

Blikstein, 2016; Papert, 2000; Peppler, Halverson & Yasmin 2016a; Peppler, Halverson & Yasmin, 2016b; Somerson & Hermano,

1. 연구의 필요성

학교에서의 '메이커 교육'은?

- 학교 현장에서는 주로 <u>3D 프린터</u>나 <u>디지털 제작 도구</u>의 활용교육 등으로 실시(조경미, 이연승, 2018)
- <u>단순 결과물들을 구현해내는 수준</u>에 그치는 경우가 많아 학생 스스로의 창작활동을 강조하는 메이커 교육의 취지와 멀어지고 있음(김성수, 유현석, 2019).
- 주로 <u>일회성 교육</u>이 실시, 지속적인 교육의 개발 및 적용에 대한 연구가 부족 (박태정, 차현진, 2018)
- 주로 창의적 체험활동과 방과후 강좌에서 실시. 교육과정 안에서 진행한 연구는 매우 미비 (강인애, 김양수, 윤혜진, 2017)
- 기술가정, 미술 등의 일부 교과에서 실시, <u>다양한 교과에서 실시가 필요</u>

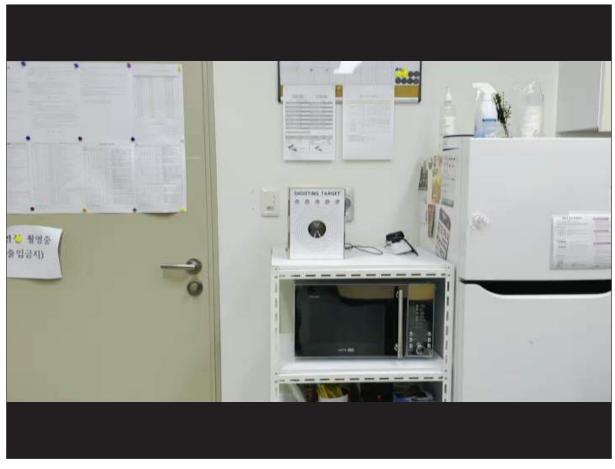
1. 연구의 필요성

최근의 **'학교 체육'**은?

- 미국의 <mark>모형 중심 체육교육</mark>에 의존하며 벗어나지 못하고 있은 실정(최의창, 2021)
- 체육교육의 변화, 창의·융합형 인재 양성의 필요성은 인식하나 구체적 방법에 대한 연구가 부족
- 신체활동 위주의 체육교육으로 융합교육이 제한됨, 체육교과에서의 메이커 교육은 전무한 실정
- <u>ICT 융합 체육의</u> 필요성에 대한 요구는 점차 증가(김영미, 2019)
- 학생들의 스포츠 경험 확장을 위해 **테크놀로지의 활용이 필요**(유정애, 손환, 진연경, 2019)
- 미세먼지와 코로나-19로 인해 <u>새로운 교수학습방법의 필요성이 제기됨</u>(권용철, 조건상, 양동석, 2020)
- <u>창의·융합 역량을 함양</u>을 위한 프로그램 개발 등 구체적 시도가 필요함(권용철, 조건상, 유은혜, 2021)

l. 연구의 필요성

체육 교과 메이커 프로그램의 개발 및 적용


I. 연구의 필요성

피지컬 컴퓨팅(아두이노&센서)을 기록도전(사격)에 적용한 이유

- 정보 교과에서 이미 활발하게 활용
- 비용이 저렴(실제 사격 1세트 당 수백만원의 구입 비용)
- 기존 사격 수업의 안전 문제 해결
- 기존 사격 수업의 정확도 문제 해결-보다 타당하고 신뢰로운 평가
- 자신이 만든 결과물을 활용한 신체활동-동기 및 흥미 유발

표. 개발과정

프로토타입 개발 과정(레이저건)

구분	디자인	특징
1차		■ 아두이노 나노, 버튼, 레이저로 구성 ■ 버튼을 누르면 레이저가 출력
2차		■ 완구 총 이용 ■ 아두이노 나노, 격발 버튼, 장전 버튼, 레이저로 구성 ■ 1회 장전- 1회 격발 ■ 스위치가 포함된 외부 전원 사용
3차		■ 배터리 홀더를 제외한 모든 부품을 총 내부로 삽입 ■ 장전 버튼의 위치 변경

표. 개발과정

최종 개발 프로토타입 (레이저건)

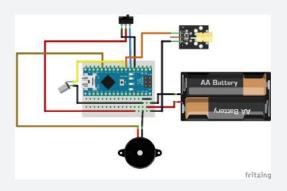
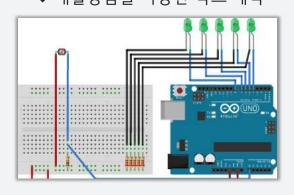

- ❖ 기존 프로토타입에 <mark>총을 아래로 향하면 장전</mark>되는 기능 추가
- ❖ 버저의 사용으로 장전 및 격발 시 <mark>효과음</mark> 추가

표. 개발과정

최종 개발 프로토타입 (레이저건)

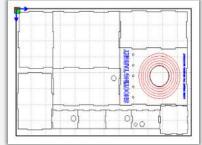
- ❖ 학생들은 회로도를 보고 만들기
- ❖ 오픈 소스이므로 공유된 소스 활용

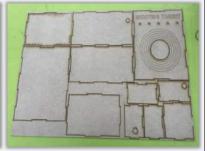
표. 개발과정


프로토타입 개발 과정(레이저 인식 표적)

구분	디자인	특징
1차	SIDOTING TANGET	■ 조도센서, LED, 아두이노 우노, 브레드보드로 구성 ■ 레이저가 조도센서에 인식 시 LED가 좌측부터 순차적으로 점등
2차	SHOOTING TARGET	■ 조도센서, LED, 아두이노, 브레드보드, 프레넬 렌즈로 구성 ■ 프레넬 렌즈 이용으로 표적 크기 증가 ■ 레이저가 렌즈에 명중 시 LED가 점등 ■ 5회 명중시 5회 깜빡인후 점멸
3차	SHOOTING TARGET	■ 직접 설계한 케이스 도면을 레이저 가공 장비를 활용하여 MDF로 제작 ■ 조도센서 고정용 내부 박스 제작

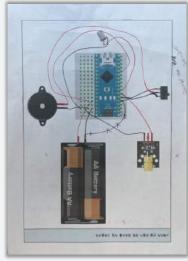
표. 개발과정


- # 프로토타입 개발 과정(레이저 인식 표적)
 - ❖ 학생들은 회로도를 보고 만들기
 - ❖ 오픈 소스이므로 공유된 소스 활용
 - ❖ 재활용품을 이용한 박스 제작


```
| Sectial begin (9600);
```

Ⅱ. 개발과정

- # 프로토타입 개발 과정(레이저 인식 표적)
 - ❖ 레이저 가공기 도면 공유
 - ❖ 레이저 가공기를 보유한 학교에서는 누구나 출력 가능



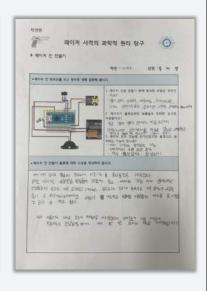


표. 개발과정

학습지 개발

Ⅱ. 개발과정

#동영상 매뉴얼

- ❖ 교사나 학생들에게 보다 많은 제작 정보를 알리기 위해 제작
- ❖ 동영상 매뉴얼 URL
 - ✓ 아두이노 활용법 및 스케치 업로드
 - https://www.youtube.com/embed/JiSiAgngwe4
 - ✓ 레이저 건 만들기 1
 - https://www.youtube.com/embed/cyoVy1GWhLU
 - ✓ 레이저 건 만들기 2
 - https://www.youtube.com/embed/7-or1TgXTi0
 - ✓ 레이저 인식 표적 만들기 (제작 중)

Ⅲ. 활용사례

적용되는 메이커 교육의 수준(학교, 교사, 학생 실정 및 수준 고려)

수준	차시	내용	차이점
낮은 수준	5~10	레이저 건 및 표적 만들기 활동 규격화된 표적 만들기 활동 제작한 결과물을 활용한 기록도전 신체활동	원리 학습에 대한 비중이 적음
높은 수준	10~15	레이저 건 및 표적의 제작 원리 학습 나만의 표적 설계 및 만들기 활동 규격화된 표적 만들기 활동 공유하기 활동 제작한 결과물을 활용한 기록도전 신체활동	만들기 활동의 기 본 원리에 대해 실습하고 적용

Ⅲ. 활용사례

교수-학습 지도 계획

차시	내용	학습 목표	교수·학습 자료
1	메이커 교육의 이해	■스포츠에 적용된 다양한 테크놀로지를 이해할 수 있다.	PPT
2~3	아두이노를 통한 센서와 LED 제어	■스포츠에서 다양한 센서가 적용된 사례를 설명할 수 있다. ■피지컬 컴퓨팅 도구를 활용해 다양한 센서를 제어할 수 있다.	PPT, 아두이노, LED, 조 도센서, 레이저 센서, 학 습지
4~7	다양만 메이커 도구를 활용해 함께 만들기	 ■다양한 만들기 도구를 활용하여 만들기에 참여할 수 있다. ■레이저 인식의 원리를 활용하여 창의적인 표적을 제작할 수 있다. ■만들기 활동에서 경험하는 실패의 상황에서 지속적인 도전으로 오류를 수정할수 있다. ■모둠원과 협력하여 만들기 활동에 참여할 수 있다. 	PPT, 권총 모형, 표적케 이스용 박스, 아두이노, LED, 조도센서, 레이저 센서 등
8	결과물과 제작 과정의 공유	■만들기에 활용된 원리를 결과물을 통해 설명할 수 있다. ■만들기의 과정에서 알게된 지식과 정보를 공유할 수 있다.	스마트폰, 학습지
9	제작한 결과물에 대한 개선방향 및 새로운 아이디어 도출	■만들기를 통해 제작한 결과물을 활용해보고 개선방향과 새로운 아이디어를 도 출할 수 있다.	학습지
10 ~14	MAKER FARE를 통한 신체활동 참여	■자신이 직접 제작한 장비를 활용하여 레이저 사격을 실시할 수 있다. ■다양한 체력운동에 레이저 사격을 접목하여 신체활동을 실시할 수 있다.	레이저 건, 레이저 인식 표 적, 학습지
15	레이저 사격 수행평가	■레이저 사격과 관련된 평가에 참여할 수 있다.	레이저 건, 레이저 인식 표 적, 기록지

Ⅲ. 활용사례

- # 현재 전국 다수의 중고등학교에서 활용 중
- # 체육수업 & 자유학기 에서 활용
- # 신체활동에 활용(사격활동+체력운동+레이저런)

체육 수업을 활용한 만들기

Ⅲ. 활용사례

중학교 자유학기 활용 수업

Ⅲ. 활용사례

#고등학교 체육수업 사례

IV_{*} 활용효과

Ⅳ. 효과

- ┌ 흥미와 동기유발을 통한 신체활동 촉진
- 개인적 차원 ■ 지속적 참여와 지속적 도전
 - 스포츠 관련 과학적 지식(테크놀로지)의 함양
- 학습 과정과 결과에 대한 소통, 공유, 나눔
 - 협력적 문제해결력 신장
 - 안전한 교수학습 자료로 활용
- 교과 학습 차원 ■ 미세먼지 상황 대비 교수학습 프로그램
 - 구성주의 교수학습의 실현

|--|

2021년 한국스포츠교육학회 제 3차 교육세미나

2021년 10월 22일 발행

· 발행인 : 유 정 애

· 편집인: 학회사무국

· 발행처 : 한국스포츠교육학회

(08826)서울특별시 동작구 흑석로 84

중앙대학교 303관 407-1호

한국스포츠교육학회 제3차 교육세미나

미래체육교육에서의 에듀테크 활용 및 적용방안

10. 22. — M 4:00~

